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Abstract 

 
Finite field multipliers over GF(2m) are widely used in 

applications like elliptic curve cryptography (ECC) and error 

control coding systems. These real time applications require an 

efficient hardware design for polynomial-based multiplication. 

In this paper, an efficient systolic structure for multiplication 

over GF(2m) based on irreducible all-one polynomial (AOP) is 

designed. The paper presents a cut-set retiming technique to 

reduce the critical-path to one XOR gate delay. This technique 

is highly useful for pipelining digital circuits to reduce the 

critical path. This paper also presents a novel register- sharing 

technique and merging of systolic structures to reduce the 

register requirements and the latency in the systolic structure.  

 

Keywords: AOP, systolic, cut set retiming, register 

share technique 

 

  

1.Introduction 
 

A low power, area efficient architecture is very 

important in high speed VLSI implementation. Finite 

field arithmetic is an area which involves operations like 

addition, subtraction, multiplication, division on finite 

fields. Thus the area efficient design of finite field 

multipliers is of very important in VLSI.  

Many approaches and architectures have been 

proposed to perform multiplication in GF(2
m
). In those 

implementations, much architecture applied the systolic 

array concept. In general, a non-systolic architecture has 

global signals. Therefore, if m becomes large, 

propagation delay also increases. A systolic architecture, 

however, does not suffer from the problem. This is 

because the systolic architecture consists of replicated 

basic cells and each basic cell is connected with its 

neighbouring cells through pipelining, i.e., there are no 

global signals. Consequently, the systolic architecture is 

a better choice than the non-systolic architecture for a 

high-speed VLSI implementation. 

 

 

 

 

 

 

The most commonly used basis representations are dual, 

normal, and standard basis. Multipliers using the dual 

and normal basis representations require a basis 

conversion, in which complexity heavily depends on the 

irreducible polynomial. In contrast, multipliers that use 

the standard basis do not require a basis conversion; they 

are therefore more efficient from the point of view of 

irreducible polynomial selection and hardware 

optimization. 

Though systolic structures are widely used for 

field multiplication, it has two major issues. First, the 

registers in the systolic structures usually consume large 

area and power. Second, the systolic structures usually 

have a latency of nearly m cycles, which is very often 

undesired for real-time applications. Therefore, this 

paper presents a novel register- sharing technique to 

reduce the register requirement in the systolic structure. 

The proposed algorithm not only facilitates sharing of 

registers by the neighbouring PEs to reduce the register 

complexity but also helps reducing the latency. 

 

 

2. Algorithm 
 

 

Let f(x) = x 
m
 + x

m-1 
+ … +x+1 be an irreducible AOP of 

degree m over GF (2). As a requirement of irreducible 

AOP for GF (2
m
) ,  (m+1) is prime and 2 is the primitive 

modulo (m+1). The set {1, α, α
2
,….,α

m-1
} forms the 

canonical basis, such that an element X in the binary 

field can be given by 

 

X= Xm-1 α 
m-1

 + X m-2 α 
m-2

 + ….+ X1 α + X0               

                                                                         (1) 

                                                               

where Xi ε GF(2) for  i= m-1,….,2,1,0. 

Since α is a root of f(x), we can have f (α) = 0 and  

f(α)+ α f(α) = 

 (α
m 

+ α
m-1  

+…..+ α + 1) + α
 
(α

m 
+ α

m-1  
+…..+α+1) 

                    =α
m-1

+1=0                                                                                   

                                                                  (2)   
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Therefore, we have   α
m-1  

= 1                             (3)

  

This property of AOP is used to reduce the complexity 

of field multiplications as discussed in the following. 

Any element in given by (1) in polynomial basis 

representation can be represented as, X= x0+x1 α
 
+…..+ 

xm α
m

 ; where xi ε GF(2) and {α
m 

, α
m-1  

,....,α ,1} is the 

extended polynomial basis. Similarly, if, A, B, C ε 

GF(2
m
),  they can be represented by the extended 

polynomial basis as 

,      ,   

                                         (4) 

where  aj, bj , and cj  ε GF(2), for 0≤ j ≤ m-1 , and  am=0 , 

bm  = 0 and cm =0. 

If C is the product of elements A and B, then we have  

 

 C= A.B mod f (α)                                                      (5) 

 

This can be decomposed to a form    

                    (6)     

The above equation can be expressed as a finite field 

accumulation 

                                                        (7) 

where Xi is given by  

     Xi= bi . A
i 
                                                          

                                                                                   (8a) 

For  A
0 
  = A , and   A

 i 
 = [ α

 i 
. A mod f(α) ]   . Thus A

i 
  

can be obtained from A as  

 

A
i
= a m-1 α 

m
 +a m-i-1 α 

m-1 
+…..+ a m-i+2 α + a m-i+1                                                                                                                                             

                                                                                   (8b) 

such that A
i+1

 can be obtained from A
i
 recursively as 

                

 A
i+1

 = α. A
i 
 mod f (α).                                              (9) 

 

The partial product generation and modular reduction 

are performed according to the above equations. 

 

Equation 2.9 can be expressed as  

 

A
i+1

 = [ a0
i
. α + a1

i
 . α 

2
 + … + am

i
  . α 

m+1
] mod f(α)   

                                                                                  (10a)                                                                         

   

where 

                          (10b) 

 

 

Substituting 2.3 into 2.10a, A
i+1 

can be obtained as 

 

A
i+1 

= a0 
i+1 

+ a1 
i+1 

. α + … + am
 i+1 

. α 
m                                                                                                                  

 

                                                                                                                             
(11a)

   

where 

             a0
i+1  

 =  a
i
m

                                        

 

                                                                                                                             
(11b) 

             aj
i+1    

=  a
i
j-1                                       (11c) 

 

By using the above equations, we can derive the 

proposed linear systolic structure. 

 

 

3.Systolic Design 
 

 

 

 
 

Fig.1 Signal Flow Graph 

 

Figure 1 shows the signal flow graph based on the 

algorithm described in section 2. For systolic 

implementation of multiplication over GF (2
m
), the 

operations of equations (7), (8) and (11) have to be done 

recursively. Each recursion consists of three steps, i.e., 

modular reduction, bit- multiplication, and bit-addition. 

Equations (7), (8) and (11) can be represented by the 

SFG shown in Fig 1. It  consists of m modular reduction 

nodes R(i) and  m addition nodes A(i) for 1 ≤ i ≤ m  , 

and (m+1) multiplication nodes M(i) for 1≤i≤m+1. Node 

R(i) performs the modular reduction of degree by one 

according to (11). Node M (i) performs an AND 

operation of a bit of operand B with a reduced form of 
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operand A, according to (8). Node A(i) performs the bit-

addition operation according to equation (7). 

 

 

 

4. Cut Set Retiming 
 

Retiming is a transformation technique used to change 

the locations of delay elements in a circuit without 

affecting the input/output characteristics of the circuit. A 

cut set is a set of edges that can be removed from the 

graph to create 2 disconnected sub graphs. Critical path 

is defined to be the path with the longest computation 

time among all paths that contain zero delay. The lower 

bound on the clock period of the circuit can be achieved 

by retiming. 

 

Figure.2 shows cut-set retiming of the SFG. Here the 

cut-set retiming technique reduces the critical-path of a 

PE to TX. It is observed that the node R (i) performs 

only the bit-shift operation according to (11), and 

therefore it does not involve any time consumption. 

From the figure, it can be observed that the cut-set 

retiming allows to perform a reduction operation, bit-

addition, and bit-multiplication concurrently, so that the 

critical-path is reduced to max{ TA , TM, TR } where TA , 

TM, and TR are respectively the computation times of the 

bit-addition nodes, bit-multiplication nodes, and 

reduction nodes. Thus the critical-path is not larger than 

TX (same as TA). 

 

 
 

Fig.2 Cut set Retimed Signal Flow Graph 

 

 

5. Proposed Systolic Structure 
 

 

 
 

Fig.3 Proposed Systolic Array 

 

The basic design of a systolic multiplier thus derived is 

shown in Fig.3. It consists of (m+2) PEs and the 

structure of the PEs are shown in Fig.4. During each 

cycle period, the regular PE (from PE [2] to PE [m-1]) 

not only performs the modular reduction operation 

according to equation (11), but also performs the bit-

multiplication and bit-addition operations concurrently. 

 The internal structure of PE0/PE1, general PE, 

AND cell, XOR cell and BSC are given respectively in 

Figure 4. 

   
 

 

 
 

 

 
 

Fig.4 Internal Structure of PEs 
 

 

6. Shared Register Low Latency Systolic 

Structure 
 

The product term in equation (7) can be split into two 

terms like 

      

 

(12) 

 

 

In the above equation, first term contains    m/2 +1 

partial products and the other has m/2 partial products. 

Thus the systolic design can be divided in to two 

systolic branches, and an addition cell is required to 

perform the final addition. The structure of PEs is of 

same as given in figure 4. It is seen that the latency of 

the structure is only (m/2 + 3) cycles.  

 

                 m/2                 m 

        C =     ∑      Xi   +  ∑        X i                                                (12) 
             i=0              i=m/2+1  
           

 

 

  C 
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Fig.5 Low Latency Systolic Structure 

       In figure 5, the two systolic branches share the same 

input operand and the PEs in both branches does the 

same operation, a more efficient structure can be made 

using the register sharing technique. It combines two 

regular PEs together by sharing one input operand. The 

whole structure requires only (2.5m
2
+6.5m+4) bit 

registers.  The latency of the structure is (m/2) + 3 

cycles. 

       As the PEs in two branches perform the same 

operation, the two  PES can be combined together into a 

single PE, which leads into more efficient structure as 

shown in figure 6. 

 

 

 
 

 
Fig.6 Register Sharing Systolic structure 

 

7.  Modified Systolic Structure 
 

The proposed systolic structure can be further modified 

by decomposing the product term in equation (7) in to 

four systolic branches as given in equation (13). The 

corresponding design is shown in figure 7. 

  

 

 

 

 

                                                      

 

 
 

 
Fig.7 Modified Systolic Structure 

 

Again using the register share technique, the two 

systolic branches can be merged in to a single branch. 

The combined systolic structure is given in figure 8. All 

PEs make use of the basic internal structures shown in 

figure 4. This design requires only (m/4) + 4 cycles of 

latency.  

 
 

 
Fig.8 Combined Systolic Structure 

 

8.  Results 
 

The proposed design and the modified design have been 

coded in Verilog and the simulation results are shown in 

the following graphs.  

 

 

 
 

 
Fig.10 Simulation result of proposed structure (m=4) 

 
 

The simulation output shows a latency of 6 cycles which 

is equal to (m+2) cycles. 

 

The simulation result of low latency structure is shown 

in figure 11. 

  

 
 

Fig.11 Simulation results of low latency structure (m=4) 

              m/4 -1        m/2-1          3m/4 -1            m 

          C = ∑   Xi   + ∑    X i   + ∑    X i    + ∑   Xi        (13)                               
            i=0          i=m/4       i=m/2                i=3m/4 
           

 

 

  C 
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The result shows a latency of 5 cycle, which is equal to 

(m/2+3) cycles. The latency less when compared with 

the proposed systolic design. 

 

Furthermore, the output of modified systolic structure in 

fig.8 (for m=20), require a latency of only 9 cycles 

compared to 22 cycles in the proposed design. 

 

 

 
Table 1- Area and time complexities when m=4 

Design  LUTs 

utilization 

factor 

Latency Registers 

Used 

Critical 

Path 

Proposed 

systolic 

array 

(Fig.3) 

3% 6 59% Tx 

Low 

latency 

systolic 

array 

(Fig.5) 

2% 5 59% Tx 

Register 

shared 

systolic 

array 

(Fig.6) 

2% 5 55% Tx 

 

The table 1 shows the synthesis results of various 

designs. The improvements are significant when m is a 

large number.  

 

9.   Conclusion 
 

Modified systolic design for the multiplication over 

GF(2
m
) based on irreducible AOP using register sharing 

technique is proposed. Using cut-set retiming we have 

been able to reduce the critical path to one XOR gate 

delay and using register sharing technique, we achieved 

a low-latency bit-parallel systolic multiplier. Compared 

with the existing systolic structures for bit-parallel 

realization of multiplication over GF(2
m
), the proposed 

design is found to involve less area, shorter critical-path 

and lower latency. 
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